A Modified 2D Multiresolution Hybrid Algorithm for Ultrasound Strain Imaging
نویسندگان
چکیده
Ultrasound elastography is an imaging modality to evaluate elastic properties of soft tissue. Recently, 1D quasi-static elastography method has been commercialized by some companies. However, its performance is still limited on high strain level. In order to improve the precision of estimation during high compression, some algorithms have been proposed to expand the 1D window to a 2D window for avoiding the side-slipping. But they are usually more computationally expensive. In this paper, we proposed a modified 2D multiresolution hybrid method for displacement estimation, which can offer an efficient strain imaging with stable and accurate results. A FEM phantom with a stiffer circular inclusion is simulated for testing the algorithm. The elastographic contrast-to-noise rate (CNRe) is calculated for quantitatively comparing the performance of the proposed algorithm with conventional 1D elastography using phase zero estimation and the 1D elastography using downsampled (d-s) baseband signals. Results show that the proposed method is robust and performs similarly as other algorithms in low strain but is superior when high level strain is applied. Particularly, the CNRe of our algorithm is 15 times higher than original method under 4% strain level. Furthermore, the execution time of our algorithm is five times faster than other algorithms.
منابع مشابه
Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays.
Two-dimensional (2D) cross-correlation algorithms are necessary to estimate local displacement vector information for strain imaging. However, most of the current two-dimensional cross-correlation algorithms were developed for linear array transducers. Although sector and phased array transducers are routinely used for clinical imaging of abdominal and cardiac applications, strain imaging for t...
متن کاملUltrasound 2D strain measurement for arm lymphedema using deformable registration: A feasibility study
PURPOSE Lymphedema, a swelling of the extremity, is a debilitating morbidity of cancer treatment. Current clinical evaluation of lymphedema is often based on medical history and physical examinations, which is subjective. In this paper, the authors report an objective, quantitative 2D strain imaging approach using a hybrid deformable registration to measure soft-tissue stiffness and assess the ...
متن کاملComputer Vision Elastography
This thesis is concerned with developing a two-dimensional (2D) ultrasound speckle tracking technique to quantify 2D axial and lateral strain fields for studying tissue dynamics. Knowledge of tissue displacement to infer strain characteristics is of major clinical importance. In part, this is due to the lack of simple and accurate non-invasive techniques to measure in vivo strain. The establish...
متن کاملQuantification and MRI validation of regional contractile dysfunction in mice post myocardial infarction using high resolution ultrasound.
A versatile, computationally efficient two-dimensional (2D) speckle-tracking method based on high resolution ultrasound imaging is proposed to quantify regional myocardial dysfunction in mice. Ultrasound scans were performed on the hearts of normal and post myocardial infarction (MI) mice with a Vevo770 scanner (VisualSonics, Toronto, Canada) operating at 30 MHz frequency. Regional myocardial m...
متن کاملCorrelation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
Two-dimensional (2D) transducer arrays represent a promising solution for implementing real time three-dimensional (3D) ultrasound elastography. 2D arrays enable electronic steering and focusing of ultrasound beams throughout a 3D volume along with improved slice thickness performance when compared to one-dimensional (1D) transducer arrays. Therefore, signal decorrelation caused by tissue motio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017